Category Archives: STEM

Tech firms are forgetting about STEM and focusing on STEAM

Time to dust off the cobwebs. (EPA/Simela Pantzartzi)
It was recently thought that four subjects alone could spur innovation by bringing order and logic to creative thinking: Science, technology, engineering, and math—fields known to much of the modern world by their acronym STEM. But STEM is already passé.
A new acronym has come to the fore, pioneered by advocates like the US’s Rhode Island School of Design, which has developed lessons on it for primary-school and high-school educators. It’s called STEAM, and though it might look and feel very much like its predecessor, the addition of the letter “A” is significant. It represents the “Arts” and tech firms are quickly realizing its importance. Why?
As Tom Perrault, chief of staff at digital health company Rally Health, pointed out in an article for Harvard Business Review, knowing how to make a product is no longer enough—in part because machines will soon be able to automate many of the data-driven tasks associated with this. Where humans can contribute more is in understanding the needs and behavior of the other humans for whom they are making things.
How a product is designed, its aesthetics, and how seamless an integration it makes into a person’s life is what allows us to distinguish one product from another, and one industry competitor from another. Liberal arts-based subjects are key to this because they tend to teach students how to understand human nature, and are creative at heart. Steve Jobs knew this, and said so after Apple’s launch of the iPad in 2011: “It’s in Apple’s DNA that technology alone is not enough. It’s technology married with the liberal arts, married with the humanities, that yields the results that makes our hearts sing.” And now Jony Ive, Apple’s chief design officer, is doing a stint as chancellor of the UK’s Royal College of Arts to help other students realize the importance of this.
It’s not just big tech companies that have taken to the idea. Michael Litt, co-founder of video platform startup Vidyard, said he is hiring more humanities graduates than those who are from STEM-based backgrounds, and is trying to fill in the gaps in his own engineering education by reading up on philosophy and psychology. Indeed, the arts are already more important to tech than you might think. Data compiled by LinkedIn in 2015 found that between 2010 and 2013, the growth of liberal-arts graduates entering the industry outpaced that of computer science and engineering majors by 10%.
Policymakers in the US have also taken to the additional “A”: In March, lawmakers chairing the Congressional STEAM Caucus, created in 2013 by a bipartisan group of US legislators, criticized US president Donald Trump for proposing the elimination of the National Endowment for the Arts, arguing that “[a]ctivating both sides of the brain prepares people to be innovative and creative, both critical to growing our 21st Century economies and creating good jobs.
The penchant for mixing arts with science to foster innovative thinking is hardly new, of course. Students of history will remember the idea was popularized in renaissance Italy by the likes of Leonardo Da Vinci. Perhaps it just took a strong STEM trend to reawaken popular appreciation for the concept.
July 28, 2017

Effective implementation of project-based learning

ORIGINAL: Teacher Magazine Australia

Effective scaffolding of student learning was identified as one of the facilitating factors of PBL. ©Shutterstock/cmgirl

Tags: effective teaching methods, evidence-based practice, research news,international, short articles

If you’re looking to use project-based learning (PBL) in the classroom next term, a new research review offers some practical pointers for teachers.

The paper, by Durham University colleagues Dr Dimitra Kokotsaki, Victoria Menzies and Dr Andy Wiggins, also has six key recommendations for the successful adoption of a student-centred approach in mainstream schools. Writing in the journal Improving Schools, the academics explain PBL is an inquiry-based approach that can be used from early years through to higher education, where students learn by addressing a real-world challenge. They add that its uniqueness lies in the fact that students come up with an end product which represents their ‘new understandings, knowledge and attitudes …’.

Their literature review looked at studies from around the world exploring evidence of the effectiveness of PBL – including

  • the use of concept maps in Hungarian Kindergartens,
  • a primary school PBL program for low SES students in the United States and
  • a STEM-based project involving female high school students in Taiwan.

They note that although the strength of the findings are limited and some studies showed mixed results, the research indicates there are factors that can aid the successful adoption of project-based teaching in schools. These include:

  • Technology: Regarded as a ‘major enabler’ for students to design and develop their project. Also found to help both lower and higher performing students construct knowledge, although the researchers add teachers need to guide and support students to use technology safely and effectively.
  • High quality group work: Kokotsaki, Menzies and Wiggins cite research suggesting positive interactions between students, individual accountability, equal participation and social skills are ‘pivotal’ to the success of PBL collaboration, particularly when there are gender, achievement or social hierarchies at play.
  • Scaffolding: ‘The successful implementation of PBL in the classroom lies on the teacher’s ability to effectively scaffold studentslearning, motivate, support and guide them along the way,’ the academics advise.
  • Professional support: Teachers who received support (acknowledging their competence and autonomy) from senior managers and colleagues were more likely to implement and persist with PBL.

When it comes to how teachers can best support PBL in the classroom, the paper discusses a US study where 12 teachers recognised as being experts in the instructional method were interviewed (Mergendoller & Thomas, 2005). Their advice for successful implementation and management included:

  • being flexible with scheduling (and allowing for extensions to the project timeline);
  • giving students a rubric before they start to help orient them;
  • involving other teachers, parents and community members; and
  • using a variety of assessment methods (including opportunities for reflection) where both individual and group performance can be recognised.

Having reviewed the literature, Kokotsaki, Menzies and Wiggins say it’s possible to make six key recommendationswhich are considered to be essential for the successful adoption of a PBL approach in the mainstream school setting’:

  1. Student support – including effective time management and student self-management, and effective use of technology;
  2. Teacher support – networking and PD opportunities, and school leader support;
  3. Effective group work – students need to have equal levels of agency and participation;
  4. Balanced instruction – using both didactic instruction and independent inquiry to help prepare students for independent work;
  5. A reflective, self- and peer-evaluated assessment process – specifically, ‘evidence of progress needs to be regularly monitored and recorded’; and,
  6. Student autonomy and choice – Kokotsaki, Menzies & Wiggins, 2015 say this needs to be part of the process so students have a sense of ownership and control.


Mergendoller, J. R., & Thomas, J. W. (2005). Managing project based learning: Principles from the field. California: Buck Institute for Education.

Kokotsaki, D., Menzies, V., & Wiggins, A. (2016). Project-based learning: A review of the literature. Improving Schools, Vol. 19(3) 267–277.

  1. Are you using a range of assessment methods for PBL?
  2. How are you assessing individual and group work?
  3. How are you scaffolding student learning in PBL?
  4. Are you setting aside specific teaching time to prepare students for independent work?
  5. When planning a project, how flexible is your schedule?
  6. Do you build in time for extensions if needed?

Diseñar una experiencia #STEMaker para sus estudiantes

ORIGINAL: BlueKnowledge
Publicado por etate en Educación
2 de julio de 2015 |

chat boxes of different hashtags to indicate conversationEn la última década, nuestros espacios comunitarios, como escuelas, museos, centros juveniles e incluso lugares de trabajo, han sido cooptados por una revolución del aprendizaje. Esta revolución nos ha llamado a reexaminar nuestras nociones de enseñanza y aprendizaje y reimaginar un nuevo enfoque para preparar a los estudiantes de todas las edades a vincularse, aprender al cambio local e innovación global.

A medida que este movimiento se desarrolla, los titulares

  • Se predice la necesidad de carreras STEM (Ciencia, Tecnología, Ingeniería, Matemáticas) con el fin de ser competitivo globalmente
  • Se requiere un pensamiento crítico (un subproducto de STEM que aprende, hace y diseña el pensamiento) como un medio para navegar la vida cotidiana y las elecciones cívicas
  • Se requieren la transformación de la escolarización en entornos de aprendizaje rigurosos y relevantes. (Tenga en cuenta que esto va más allá de los maestros individuales y de sus aulas y distribuye la responsabilidad entre los tomadores de decisiones, como los administradores y los responsables de la formulación de políticas).

Si esta revolución del aprendizaje es televisada (o transmitida a través de dispositivos móviles), ¿cómo cambiará la narrativa de su aula para preparar a los estudiantes para el siglo XXI?

Al reflexionar sobre la preparación de sus alumnos, voy a compartir puntos de vista de mi reciente presentación a más de 500 maestros y administradores en el Centro Internacional de Liderazgo en la Educación (Icle) Modelos Conferencia Escuelas de junio de 1 de 28 de julio de 2015 en Atlanta, GA.
El diseño de una experiencia STEMaker para sus estudiantes
Pónte el sombrero de “fabricante” y aprender a diseñar una experiencia STEMaker que involucra a los estudiantes en el pensamiento de alto nivel, integrando contenidos y prácticas STEM, y generando soluciones para situaciones del mundo real. En esta sesión, usted colaborará para completar un rápido desafío de diseño práctico, planear una actividad de aprendizaje basada en estándares de STEMaker e identificar recursos que le ayudarán a transformar su salón de clases en un STEMakerspace riguroso y relevante.

En mi sesión, los participantes participaron en varias actividades para ayudarse a sí mismos y a sus estudiantes a:

  • (re) imaginar las posibilidades de STEM;
  • (Re) crear soluciones significativas, del mundo real, y
  • (re) pensar productos y procesos.

Hemos despertado la curiosidad con el aprendizaje experimental, hacer algo que importa con una “bolsa de cosas”, para demostrar cómo una experiencia STEMaker puede ser de bajo costo y baja tecnología, manteniendo altos niveles de compromiso y, por supuesto, divertido.

A continuación, cimentados la experiencia STEMaker en los marcos de aprendizaje, tales como el

para ilustrar cómo una serie de actividades de aprendizaje basadas en estándares puede comprender una experiencia de aprendizaje riguroso y relevante.

Un estudio reciente informó que los maestros quieren un mayor desarrollo profesional para ayudarles a aplicar STEM, específicamente el ciclo de diseño de ingeniería. Pidieron, por lo que respondieron con unos pocos ejemplos de los ciclos de diseño de ingeniería para todas las edades:

El resto de la presentación ejemplifica formas para que los maestros implementen el ciclo de diseño de STEMaker en sus aulas. Los participantes con entusiasmo pensaron posibles desafíos de diseño con la persona a su lado.

Valientes voluntarios jugaron en una ronda rápida de “Sí, y. . . “Para modelar la forma de estructurar las actividades de una lluvia de ideas o ideación, capacitando a los estudiantes a construir sobre las ideas de los demás. También echa un vistazo a la Agencia por diseño pensando rutinas para la educación fabricante. Se instó a los participantes a utilizar las herramientas digitales, tales como instaGrok , al andamio investigación y aprovechar la experiencia local a través de visitas a las clases o sesiones de Skype. También alenté a los participantes a que deliberaran acerca de invitar a un grupo diverso de expertos locales a sus aulas, ya que servirán como modelos para ayudar a los estudiantes a imaginar su futuro.

Conectando de nuevo a nuestro desafío de diseño de apertura, hacer algo que importa con una “bolsa de cosas”, me recordó a los participantes que el aprendizaje STEMaker puede ser de bajo costo y baja tecnología, y también les pidió que considerar el uso de herramientas digitales para documentar el proceso.

Para concluir, hice hincapié en que la evaluación y la retroalimentación fueron fundamentales para realizar el ciclo de diseño STEMaker como una experiencia de aprendizaje. Cuando esperamos que los estudiantes revisen su forma de pensar, neutralizamos la noción de tomar riesgos y normalizamos las acciones para intentar, aprender y volver a intentarlo. Es entonces, que comenzamos a cambiar la narrativa de nuestras aulas y preparar a los estudiantes para la vida real en el siglo XXI.

PS Aquí hay una breve lista de los recursos de #STEMaker que compartí con los participantes.

Conectar con bluknowledge